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Abstract We study a two-echelon serial inventory system with stochastic demand.
We assume that fixed ordering costs are charged only when an order initiates a non-
zero shipment. The system is centrally controlled and ordering decisions are based
on echelon base stock policies. The review period of the upper echelon is an integer
multiple of the review period of the lower echelon. We derive an exact analytical
expression for the objective function. From this expression, we determine optimal
base stock levels and review periods. Through a numerical study we show that there
may be several combinations of optimal review periods and that under high fixed
ordering costs both stockpoints have the same order frequency. In addition, we identify
parameter settings under which the system behaves like a PUSH-system, where the
upstream stockpoint never holds any stock. Generally, in literature fixed ordering costs
are charged at every review moment, even if no shipment results due to zero upstream
stock. We test the impact of this simplifying assumption and illustrate when it is
justified.
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1 Introduction

Inventory models can be divided into two different classes based on the way inventory
levels are monitored. While the class of models with continuous review of the inventory
status can be applied very well for slow moving products like spare parts, a different
modeling approach should be used for fast moving items, as usually observed in
production and distribution networks. In the latter situation decisions are often made
on fixed days of the week/month so that multiple activities related to ordering an item,
such as order picking and invoicing, can be more easily coordinated. Periodic review
also allows to coordinate ordering decisions for multiple items.

The simplest periodic review model for a single stockpoint and a single prod-
uct with stochastic demand is an (R, S) policy, where R denotes the review inter-
val and S the base stock level. In this paper an inventory model for a single prod-
uct with stochastic demand is investigated, too, but we study a two-echelon serial
inventory model under central control. Stock levels are reviewed periodically and
both stockpoints are allowed to have different review periods. Ordering decisions
are based on global system information and we further assume that both stock-
points use echelon base stock levels to determine the size of their replenishment
orders.

Since the policy structure is given, it remains to determine the policy parameters.
The overall goal is, in general, to minimize costs composed of fixed costs related to
each order, costs for keeping items on stock and costs for not being able to deliver. We
assume linear holding and backorder costs and we additionally suppose that fixed costs
are charged whenever an order is executed and material is shipped to a stockpoint.
We call these costs fixed ordering costs. These costs may include set-up costs of
machines, as well as transportation costs. This means that fixed ordering costs can only
be incurred if an order is placed and material is available at the up-stream stockpoint to
be shipped. The latter aspect is often ignored and fixed costs are related to each order
placed, independent of the state of the on-hand inventory of the supplying stockpoint.
The advantage of this approach is a less complicated analysis of the system, but the
impact of this simplifying assumption on the optimal solution is not clear and the
ordering costs are overestimated.

The research presented in this paper is motivated by two questions: (1) How can
the optimal policy parameters for the policy described above be computed under the
given cost assumptions? (2) Does the simplifying assumption for the fixed ordering
cost have an impact on the optimal solution?

The contribution of our paper to existing literature consists of the following aspects.
First, we derive exact expressions for the long-run average cost taking into account that
fixed ordering cost are incurred when a positive shipment quantity is initiated. Second,
we show that in general the long-run average costs are non-convex with respect to the
policy parameters. In the numerical study parameter settings are identified where
the system behaves like a PUSH system (i.e. everything arrives to the upstream is
immediately pushed to downstream stages). Furthermore, the impact of the simplifying
fixed cost assumption is investigated when optimal and non-optimal review periods
are used. The results show that when the review periods are optimized, the associated
optimal base stock levels ensure that each order results into a positive shipment. In this
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case, the long-run average costs are convex and the base stock levels can be recursively
computed as shown in Van Houtum et al. (2007).

The remainder of the paper is structured as follows. First, relevant literature on
serial systems with and without fixed ordering costs is discussed in the next section.
Next, we describe the mathematical model of the two-echelon system in detail in
Sect. 3. Then, in Sect. 4, we present the analytical results on the optimization problem
followed by the results of the numerical study in Sect. 5. The summary of the main
results and a discussion of future research directions conclude the paper.

2 Literature review

Closely related to our paper is literature on multi-echelon inventory systems under
periodic review. However, in this setting fixed costs are often not considered at all
or only implicitly mentioned. For serial systems with no fixed ordering costs orders
can be placed at the beginning of each period. For this situation, base stock policies
are shown to be optimal for the finite horizon case by Clark and Scarf (1960) and
for the infinite horizon case by Federgruen and Zipkin (1984). Fixed order costs are
implicitly considered in Van Houtum et al. (2007), because they assume that review
periods can be different at different stages, but they are given and have to satisfy the
integer-ratio constraint. Under these assumptions they have proven that base-stock
policies are optimal with respect to holding and backorder costs and they additionally
provide newsboy-type formulas to compute the optimal numerical values for the base
stock levels. Fixed costs are explicitly considered in Feng and Rao (2007) where
optimal policy parameters, review periods as well as base stock levels, are determined
for a serial two-echelon inventory system controlled by a periodic base-stock policy.
A computational optimization technique based on simulation and a Golden Section
search is presented to compute the optimal policy parameters for Poisson distributed
customer demand. In contrast to our paper, they do not provide an analytical expression
for the average fixed ordering cost per period. Furthermore we consider a more general
demand model.

Periodic review policies in combination with fixed order sizes can also result in
(R, s, nQ) policies, where R is the review period, s represents the reorder level, Q
is the batch size, and n is an integer. By generalizing the work of Chen (2000) and
Van Houtum et al. (2007), Chao and Zhou (2009) show the optimality of (R, s, nQ)

policies for a multi-echelon serial system with batch ordering and nested replenishment
intervals. However, their objective function only includes shortage and holding costs.

Furthermore, (R, s, nQ) policies are studied for a serial system by Shang and
Zhou (2009). They propose a heuristic to compute policy parameters minimizing the
average system-wide cost including fixed costs for ordering and for each review of
the inventory status. Later on, Shang and Zhou (2010) develop another heuristic for
the same system that outperforms the previous one. Shang et al. (2010) analyze a
serial system with fixed ordering costs, incurred at each order moment. They compare
an installation stock (R, S) policy with an echelon (R, S) policy and a continuous
review (s, nQ) policy. Note that echelon stock policies are based on system-wide
state information and final customer demand, while installation stock policies are
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Fig. 1 Illustration of the
inventory model

based on local (stockpoint) state information and immediate successors’ demand.
Here, the echelon (R, S) policy reflects the fact that real-time demand information
is shared between stockpoints and the (s, nQ) policy allows flexible deliveries of
replenishment orders between stockpoints. The results of their numerical study show
that the (s, nQ) policy yields lower system-wide cost than the echelon stock (R, S)

policy. Similar results have been provided before for single stockpoint models (see
Hadley and Whitin 1963; Rao 2003) and multi-location models (see Cachon 2001;
Gurbuz et al. 2007).

We would like to highlight once more, that in most papers in literature (see Shang
and Zhou 2009, 2010; Shang et al. 2010) the fixed ordering costs are assumed to be
incurred at each order moment and upstream availability of material is not considered,
which means that fixed ordering costs are overestimated. In order to investigate this
effect, we study a model where fixed costs are only incurred when material is shipped.

3 A serial two-echelon (R, S) model with fixed ordering cost

We consider a single item two-echelon serial inventory system where the stockpoints
are labeled, starting from the downstream stockpoint to the upstream stockpoint as
1 and 2 (see also Fig. 1). Stockpoint 2 receives materials from an external supplier
with infinite material availability, while stockpoint 1 replenishes its inventory from
stockpoint 2. This order quantity is restricted by the stock on-hand at stockpoint 2
such that it may happen that an order from stockpoint 1 can only be partially fulfilled.
Even the situation may occur that no material is available at stockpoint 2, so that no
shipment results from the order.

Time is divided into periods of equal length and the planning horizon is infinite. We
want to make a clear distinction between a “period” and a “review period”. Without
loss of generality, each period is assumed to have length 1 and periods are numbered
as {0, 1, 2, . . .}. On the other hand, the review period Rn of stockpoint n, can be
composed of multiple periods where at the beginning of a review period the inventory
is reviewed and orders can be placed. We assume that stockpoint 2’s review period is an
integer multiple of stockpoint 1’s review period, resulting in the condition R2 = r R1
with r = 1, 2, 3, . . ., where N = {0, 1, 2, . . .} is the set of positive integers. This
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assumption, also called integer-ratio constraint, is common for such kind of systems,
because it facilitates synchronization of ordering and it accounts for the fact fixed costs
increase as we move to the upper echelon.

Stochastic customer demand is satisfied from stockpoint 1 and unsatisfied demand
is backlogged. Demand in each period is independent and identically distributed with
expected value μ, variance σ 2, and coefficient of variation CV where D[t, t + 1) rep-
resents the demand during period t and is nonnegative. Cumulative demand occurring
during a time interval [t1, t2) with (0 ≤ t1 < t2) is denoted by D[t1, t2).

The system is under central control and global information is used to determine
replenishment quantities, so an echelon stock policy is applied. The concept of echelon
stocks is commonly used in multi-echelon inventory systems literature since Clark and
Scarf (1960). Also, our model is closely related to the models studied in Van Houtum
et al. (2007) and Feng and Rao (2007), where a system-wide echelon stock perspective
is used. Thus, we follow the same concepts in our model to be comparable to these
papers in terms of analytical results.

The echelon stock of a stockpoint is defined as all stock at this stockpoint plus in
transit to or on hand at any of its downstream stockpoints minus the backorders at its
downstream stockpoints. We define the echelon inventory position of a stockpoint as
its echelon stock plus all material in transfer to that stockpoint. Let I Ln(t) and I Pn(t)
be the echelon stock and echelon inventory position for stockpoint n at the beginning of
a period t after ordering decisions have been made. At each review period, stockpoint
n’s echelon inventory position is raised to the base stock level Sn , if possible. This
policy is called an echelon base stock policy given by the parameters (Rn, Sn).

We use the concept of synchronization for the ordering moments of stockpoints
such that each order arrival time of stockpoint 2 coincides with an ordering moment
of stockpoint 1. Without loss of generality, we assume that stockpoint 2 places
its first order at the beginning of period 0. Then the set of ordering moments of
stockpoint 2 can be defined by T2 = {k R2|k ∈ N0}, where N0 = {0, 1, 2, . . .}
is the set of natural numbers including zero. The lead time ln between placement
and arrival of an order for stockpoint n is assumed to be deterministic and it is
defined in periods. Therefore, an order placed by stockpoint 2 at period t (t ∈ T2)
arrives at the beginning of period t + l2. At this time instant stockpoint 1 can
place an order. The synchronized ordering moments of stockpoint 1 are given by
T1 = {l2 + k R1|k ∈ N0}. With this constraint, we guarantee that the arriving orders to
stockpoint 2 can be immediately forwarded to stockpoint 1 resulting in lower holding
costs.

We assume linear inventory holding and backorder costs. Each unit backlogged at
the end of a period is charged a penalty cost p. Each unit in stock at stockpoint 2 at
the end of a period is charged a holding cost h2 > 0. The added value of an item held
on stock at echelon 1 is denoted as h1 ≥ 0. Thus, a unit in stock at stockpoint 1 at
the end of a period incurs a holding cost of h1 + h2. In each period where an order is
received, a fixed ordering cost Kn (n = 1, 2) is charged.

Summarizing, there are four main events that may occur during a period:

• Arrival of orders (if scheduled to this period),
• Placement of orders (if the period is a review period),
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• Occurrence of demand,
• Incurrence of costs.

The first two events take place at the beginning of the period. If these events are
scheduled to the same period, we assume that ordering decisions are made just after
receiving the shipment. Holding and penalty costs are incurred at the end of each
period while fixed costs are charged after arrival of orders at the beginning of a period.
Customer demand may occur at any point in time during a period.

The objective of this research is to determine base stock levels Sn and review
periods Rn minimizing the long run average system-wide cost per period. Before we
can formulate the total costs in one period, which is simply the summation of holding,
backlogging, and fixed ordering costs for each echelon, we have to introduce some
notation. Since we may not charge fixed cost at each period, a variable δn(t) is defined
for stockpoint n as follows:

δn(t) =
{

1 if an order arrives at stockpoint nat the beginning of the period t,
0 otherwise.

(1)

Let Xn(t) be the echelon stock of stockpoint n at the end of period t . Also, for
any x ∈ R, we define the operators “+” and “−” as x+ = max{0, x} and x− =
−min{0, x} = max{0,−x} such that x = x+ − x−. Then, the cost at the end of period
t can be written as:

δ2(t)K2 + δ1(t)K1 + h2(X2(t) − X1(t)) + (h1 + h2)X1(t)
+ + pX1(t)

−

= δ2(t)K2 + δ1(t)K1 + h2(X2(t) − X1(t)) + (h1 + h2)(X1(t) + X1(t)
−) + pX1(t)

−

= δ2(t)K2 + δ1(t)K1 + h2 X2(t) + h1 X1(t) + (p + h1 + h2)X1(t)
−. (2)

This one period cost can be decomposed into two parts such that each part represents
costs attached to each echelon. Let Cn(t) denote the costs attached to echelon n for
period t . Then, the total costs at period t can be separated in:

C1(t) = δ1(t)K1 + h1 X1(t) + (p + h1 + h2)X1(t)
−, (3)

C2(t) = δ2(t)K2 + h2 X2(t). (4)

Our aim is to minimize the long-run average expected cost per period, which is defined
as G, as a function of the decision variables R1, R2, S1, S2:

G(R1, R2, S1, S2) = lim
T →∞

1

T

T −1∑
t=0

(C1(t) + C2(t)). (5)

We obtain the following optimization problem (P) to be studied:

(P) : Min G(R1, R2, S1, S2)

s.t. R2 = r R1, R1, R2, r ∈ N,

S1, S2 ≥ 0. (6)
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Table 1 Summary of model parameters and variables

Parameters and variables related to stock information

I Ln(t) Echelon stock for stockpoint n at the beginning of period t after ordering decisions

I Pn(t) Echelon inventory position for stockpoint n at the beginning of period t after ordering
decisions

Sn Echelon base stock level for stockpoint n

Xn(t) Echelon stock of stockpoint n at the end of period t

x+ Maximum of 0 and x for any variable x

x− Maximum of 0 and −x for any variable x

Parameters and variables related to timing of orders

ln Lead time for arrival of orders for stockpoint n

Rn Replenishment interval of stockpoint n

r Number of times stockpoint 1 orders per order of stockpoint 2

δn(t) Binary variable indicating the arrival of an order at stockpoint n at the beginning of period t

Parameters and variables related to the demand

D[t1, t2) Cumulative customer demand between the time interval [t1, t2)

μ Expected value of demand per period

σ Standard deviation of demand per period

CV Coefficient of variation of demand per period

Parameters and variables related to the costs

Cn(t) Costs attached to echelon n at the end of period t

hn Added inventory holding cost per period for each unit at echelon n

Kn Fixed ordering cost for stockpoint n

p Penalty cost for unit backlog

A summary of all problem parameters and variables used in the paper is presented
in Table 1.

4 Analysis

In order to solve problem P , we need an analytical expression for the objective function
G(R1, R2, S1, S2). We follow the approach in Van Houtum et al. (2007) and define
replenishment cycles for each stage of the system before we derive the expected
average cost and necessary conditions for optimality.

4.1 Replenishment cycles

At every R2 period, an order is shipped from the external supplier to the system and
these orders subsequently determine the stock levels at the downstream stages and
affect the costs of the system. Assume now that stockpoint 2 places an order at the
beginning of period t0 ∈ T2. Stockpoint 2 is able to order up to S2 since it has access
to an infinite capacity supplier. Thus, I P2(t0) = S2. This order is received at the
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Fig. 2 The replenishment cycles and related costs for R2 = 4, R1 = 2, l2 = 2, l1 = 1

beginning of period t0 + l2 and the present stock at level 2 is used by stockpoint 1
until the next replenishment order arrives at t0 + l2 + R2. Therefore, the order placed
at period t0 by stockpoint 2 affects the holding and ordering costs of echelon 2 at the
end of the periods t0 + l2 + k for k = 0, . . . , R2 − 1. Due to the synchronization of
order moments, stockpoint 1 is allowed to place an order at the beginning of period
t0 + l2 just after the ordered items arrive to stockpoint 2. Ideally, stockpoint 1 aims to
order up to S1 but this decision is restricted by the echelon stock at stockpoint 2 which
is S2 − D[t0, t0 + l2 + 1) at the beginning of period t0 + l2. During the time interval
[t0 + l2, t0 + l2 + R2) stockpoint 1 places r consecutive orders at periods t0 + l2 + i R1
for i = 0, . . . , r − 1. These orders arrive after l1 time units and affect the costs at the
end of the periods t0 + l2 + l1 + i R1 + j for j = 0, . . . , R1 − 1 and i = 0, . . . , r − 1.
For an illustration we refer to Fig. 2.

Based on these observations, we define a “replenishment cycle of stage 2” as the
time interval which starts with an order arrival from the external warehouse and ends
just before the next arrival. During this cycle, stockpoint 2 can receive maximal one
order. The items that arrive to stockpoint 2 will reach stockpoint 1 at earliest l1 periods
later. We define a “replenishment cycle of stage 1” as the time interval which starts in
period t0 + l2 + l1 + k R2, and ends just before the period t0 + l2 + l1 + (k+1)R2, for
each k ∈ N0. Thus, replenishment cycle of stage 1 also has length R2 and stockpoint
1 may receive new items r times during its cycle. This means, the concept of shifted
replenishment cycles is applied. What stockpoint 1 can order during its replenishment
cycle is limited to what is available at stockpoint 2 at the beginning of periods t0 +
l2 +k R2, where k ∈ N0. The moments of ordering decisions, the replenishment cycles
and the attached costs are illustrated in Fig. 2 for R2 = 4, R1 = 2, l2 = 2, l1 = 1.
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In general, the total costs attached to the replenishment cycles of stage 2 and stage 1,
triggered by the ordering decision of stockpoint 2 at the beginning of period t0, are
given as

R2−1∑
k=0

C2(t0 + l2 + k) +
r−1∑
i=0

R1−1∑
j=0

C1(t0 + l1 + l2 + i R1 + j). (7)

4.2 Derivation of the objective function

The cyclic pattern explained in Sect. 4.1 repeats itself throughout the planning horizon.
In the long-run, this inventory model can be considered as a renewal reward process
(see Tijms (1986)), such that for each stockpoint n a replenishment cycle of stage n
represents a renewal cycle and the reward equals the total costs attached to this cycle.
Then, for any t0 ∈ T2 the long-run average cost per period will be equivalent to the
expected cost of related replenishment cycles of both stages divided by the cycle length
R2.

G(R1, R2, S1, S2)

= 1

R2

R2−1∑
k=0

E[C2(t0 + l2 + k)] + 1

R2

r−1∑
i=0

R1−1∑
j=0

E[C1(t0+l1+l2+i R1+ j)]. (8)

The analysis of the objective function of problem P boils down to the analysis of
the expected echelon stocks and expected order frequencies during the replenishment
cycles of both stockpoints.

We first analyze the expected echelon stocks during the replenishment cycle of
stockpoint 2. We know that the echelon inventory position of stockpoint 2 is raised
up to S2 at the beginning of period t0 and the order arrives at the beginning of period
t0 + l2. The echelon stock at the end of period t0 + l2 + k is the difference between
S2 and the demand during l2 + k + 1 periods where k = 0, . . . , R2 − 1. Thus, the
expected value of X2(t0 + l2 + k) is given by

E[X2(t0 + l2 + k)] = E[S2 − D[t0, t0 + l2 + k + 1)]
= S2 − (l2 + k + 1)μ. (9)

Stockpoint 1 may not be able to raise its echelon inventory position up to S1 if there is
not enough stock available at the upper stockpoint. In this case, we say that there is a
shortfall in the echelon inventory position of stockpoint 1. We define the shortfall as the
difference between the target value S1 and the actual inventory position of stockpoint 1
at the beginning of a review period t after placement of orders. Denoting the shortfall
with B1(t) the following holds at ordering moments t0 + l2 + i R1 for i = 0, . . . , r −1.

B1(t0 + l2 + i R1) = (S1 − I L2(t0 + l2 + i R1))
+

= (D[t0, t0 + l2 + i R1) − (S2 − S1))
+. (10)
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The shortfall determines the echelon inventory position of stockpoint 1 after ordering
given as I P1(t0 + l2 + i R1) = min{S1, I L2(t0 + l2 + i R1)} = S1 − B1(t0 + l2 + i R1).
Using the shortfall notation, the expected echelon stock at the end of each period turns
out to be

E[X1(t0 + l1 + l2 + i R1 + j)]
= E[S1 − B1(t0 + l2 + i R1) − D[t0 + l2 + i R1, t0 + l1 + l2 + i R1 + j + 1)]
= S1 − (l1 + j + 1)μ − E[B1(t0 + l2 + i R1)]. (11)

The amount of backorders is represented by X1(t)− at the end of period t , which
can be interpreted as the shortfall of the customer. Combined with the definition of
shortfall at stockpoint 1 the amount of backorders for periods t0 + l1 + l2 + k R1 + j
with i = 0, . . . , R2 − 1 and j = 0, . . . , R1 − 1 becomes:

X1(t0 + l1 + l2 + i R1 + j)−

= (S1 − B1(t0 + l2 + i R1) − D[t0 + l2 + i R1, t0 + l1 + l2 + i R1 + j + 1))−

= (B1(t0 + l2 + i R1) + D[t0 + l2 + i R1, t0 + l1 + l2 + i R1 + j + 1) − S1)
+.

(12)

In order to analyze the expected fixed costs, we should know under which conditions
a stockpoint cannot place an order. According to the (R, S)-policy, a stockpoint should
place an order at each review period if its inventory position is below S. If there is
no customer demand between two ordering moments of a stockpoint, the inventory
position will stay at the same level, and, as a result, there will be no ordering. If there is
positive customer demand, an order cannot be placed when there is no stock available
at the upper stockpoint.

Since stockpoint 2 has a connection with an infinite supply depot, an order is placed,
if the customer demand during the previous R2 periods was positive. The expected
order frequency of stockpoint 2 given for k = 0, . . . , R2 − 1 is obtained as

E[δ2(t0 + l2 + k)] =
{

P {D[t0 − R2, t0) > 0} if k = 0,

0 otherwise.
(13)

The expected ordering decision of stockpoint 1 depends on the amount of stock
available at the second stockpoint as well as on customer demand during previous
periods. It is clear that the order that arrived at stockpoint 2 at the beginning of period
t0 + l2 will be used by stockpoint 1 till the end of r consecutive replenishment inter-
vals of 1. If there is a shortfall of stockpoint 1 at the previous review period in a
replenishment cycle, this means that no stock is left at stockpoint 2 for the remaining
replenishment decisions of stockpoint 1. Therefore, the probability of receiving a ship-
ment at stockpoint 1 depends on the previous arrivals of shipments, and it decreases
towards the following review periods during the replenishment cycle. Theorem 1
gives the expected order frequencies for stockpoint 1. The proof is provided in the
Appendix.
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Theorem 1 The expected number of orders of stockpoint 1 during a replenishment
cycle of stage 1 starting with period t0 + l1 + l2 is given as

E[δ1(t0 + l1 + l2 + i R1 + j)] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P1 + P2 + P3(0), i = 0, j = 0,

P3(i), i = 1, . . . , r − 1, j = 0,

0, i = 0, . . . , r − 1,

j = 1, . . . , R1 − 1,

where P1, P2, and P3(i) are

P1 = P{D[t0 − R2, t0 + l2 − R1) > S2 − S1, D[t0 − R2, t0) > 0},
P2 = P{D[t0 − R2, t0 + l2 − R1) = S2 − S1, D[t0 − R2, t0) > 0,

D[t0 + l2 − R1, t0 + l2) > 0},
P3(i) = P{D[t0, t0 + l2 + (i − 1)R1) < S2 − S1}

·P{D[t0 + l2 + (i − 1)R1, t0 + l2 + i R1) > 0}.

The main idea behind the proof of this theorem is considering the cases, where the
following three conditions are fulfilled just before stockpoint 1 places an order:

• The period should be a review period of stockpoint 1,
• There should be positive physical stock at stockpoint 2,
• Stockpoint 1 should have a positive shortfall.

The expressions P1, P2, and P3(i) represent the probabilities that stockpoint 1 places
an order if at the end of the previous review period of stockpoint 1:

1. There is no stock left at stockpoint 2 and there is shortfall at stockpoint 1 (P1),
2. There is no stock left at stockpoint 2 and there is no shortfall at stockpoint 1 (P2),
3. There is stock left at stockpoint 2 (P3(i)).

Obviously, under cases 1 and 2, there must be an order arrival to stockpoint 2 before
stockpoint 1 can place an order. An order arrival to stockpoint 2 is only possible at the
beginning of period t0 + l2, which is the first review period of stockpoint 1 related to
replenishment cycle of stage 1 starting with period t0 + l1 + l2.

It can be observed that the expected number of orders of stockpoint 1 during a
replenishment cycle depends on the difference of S2 and S1. If this difference gets
infinitely large, stockpoint 1 will be able to order up to S1 at the beginning of each
review period since it has access to an infinite capacity supplier. In the other extreme
case, when the base stock levels of both stockpoints are the same, all material arriving
to stockpoint 2 is pushed through the system to reach the target base stock level for
stockpoint 1. Thus, stockpoint 1 orders all the available stock at stockpoint 2 at its
first review period. As a result, stockpoint 1 can receive only one order during its
replenishment cycle independent of the number of possible order arrival moments.
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Now we are in a position to reformulate the average expected cost per period by
using Eqs. (9–13) in (8). We obtain:

G(R1, R2, S1, S2)=h2(S2 − (l2 + 1

2
(R2 + 1))μ) + K2

R2
P {D[t0 − R2, t0) > 0}

+h1

(
S1−(l1+ 1

2
(R1+1))μ− R1

R2

r−1∑
i=0

E[B1(t0 + l2 + i R1)]
)

+(p + h1 + h2)
1

R2

r−1∑
i=0

R1−1∑
j=0

E[X1(t0 + l1 + l2 + i R1 + j)−]

+ K1

R2

r−1∑
i=0

E[δ1(t0+l1+l2 + i R1)]. (14)

The derivation of (14) is provided in the Appendix.
As mentioned before, many authors neglect the availability of stock when consid-

ering fixed ordering cost and charge fixed costs whenever the inventory position of
stockpoint n is below Sn at the beginning of its review period. In this case, the last
term in Eq. (14) changes and is only dependent on the probability of having a positive
demand K1

R2

∑r−1
i=0 P{D[t0 + l2 + (i − 1)R1, t0 + l2 + i R1) > 0}. The expression

related to K2 is the same, since the external supplier has always enough stock. Later
we will discuss the impact of this simplifying assumption.

4.3 Optimization of policy parameters

At first, we determine properties for the optimal base stock levels for given review
periods using the partial derivatives of G(R1, R2, S1, S2) with respect to S1 and S2.
We get the necessary conditions for optimality as shown in Theorem 2 setting the
derivatives equal to zero. The proof of this theorem follows from standard calculus,
and is therefore omitted (we also refer to Van Houtum et al. 2007).

Theorem 2 Let S∗
1 (R1, R2) and S∗

2 (R1, R2) be the optimal base stock levels of prob-
lem P for given values of R1 and R2. Given that period demand is modeled as a
continuous random variable with the density function f (·) and the distribution func-
tion F(·), S∗

1 (R1, R2) and S∗
2 (R1, R2) are solutions of the following equations:

1

R2

r−1∑
i=0

R1−1∑
j=0

P{X1(t0 + l1 + l2 + i R1 + j)− = 0} = p

p + h1 + h2
, (15)

1

R2

⎛
⎝−h1 R1 + (p + h1 + h2)

R1−1∑
j=0

(1 − Fl1+ j+1(S1))

⎞
⎠

(
r−1∑
i=0

Fl2+i R1(S2 − S1)

)
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Fig. 3 The cost function with respect to review periods

+ K1

R2

r−2∑
i=0

fl2+i R1(S2 − S1) = 0. (16)

where for any positive number x, fx (·) and Fx (·) represent the x-fold convolution of
f (·) and F(·), respectively.

Similar conditions with inequalities can be obtained for discrete demand distribu-
tions. The Eq. (15) is dependent on the policy parameters by (10) and (12). This term
represents the nonstockout probability per period since it is the sum of probabilities of
having no backorders at the end of each period during the replenishment cycle of stage
1 divided by the cycle length. Also, it can be observed that Eq. (15) does not depend
on the fixed ordering cost. In fact, this equation is the same as the newsboy equation
derived for the model of Van Houtum et al. (2007). On the other hand, Eq. (16) depends
on the fixed cost as well as on convolution of the probability density function of the
demand. It is easy to see that the term K1

R2

∑r−2
i=0 fl2+i R1(S2 − S1) has a non-monotone

behavior in S2 − S1. As a consequence, the objective function is, in general, not con-
vex. This implies that a multi-start non-linear optimization method should be applied
to obtain the globally optimal base stock levels.

With the help of numerical exploration, we concluded that the problem is not convex
with respect to the review periods as well. An illustration can be seen in Fig. 3, where
R1 and r are represented as the decision variables for review periods. By definition
R2 = r R1. Thus, we opt for using complete enumeration to compute the optimal
numerical values for R1 and R2.

5 Numerical study

The aim of our numerical study is twofold. First, we would like to get insights into
the structure of optimal ordering moments and an optimal allocation of safety stocks
for the system when availability of stock is included in the computation of the average
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fixed ordering costs. Second, we want to test the impact of the simplifying assumption
related to the fixed ordering costs.

For our numerical experiments we consider six different factors: holding cost,
service level, coefficient of variation of demand, fixed cost, replenishment intervals,
and lead time. Firstly, we fix h1 + h2 = 1 and change the levels of h1 and h2. We
assume h1 ∈ {0.2, 0.5, 0.8} and we vary the penalty cost according to an α service
level criterion. This service level is indeed equal to the right-hand side of Eq. (15). Let,
α∗ be the target service level, then the corresponding penalty cost becomes equivalent
to α∗

1−α∗ (h1 + h2).
We investigate three different values for the target service level α∗ ∈ {0.8, 0.9, 0.99}

and their corresponding backordering cost p. Further, we take into account three levels
for the coefficient of variation of demand, CV ∈ {0.5, 1.0, 1.5}. We relate the fixed
ordering costs at stockpoint 1 to holding cost and average demand using the EOQ
formula. The holding cost at stockpoint 1 is fixed to 1, so we choose two situations
where K1/μ = 0.5 and K1/μ = 2. To analyze the effect of fixed cost of stockpoint
2, we take two different levels for K2 for each given value of K1 (K2/K1 = 1 and
K2/K1 = 2 ). Finally, we consider two levels for l1 ∈ {1, 4} and similar to the setting
of fixed ordering costs, two different levels of l2 are tested proportional to each level
of l1, (l2/ l1 ∈ {1, 2}). All factors and their levels used in the experiments are also
presented in the first column of Table 5.

We have conducted a full factorial experiment resulting in 432 problem instances.
The optimal policy parameters are computed with the commercial software Matlab
where we used a built-in nonlinear optimization tool called “fmincon” to compute
the optimal base stock levels S∗

1 and S∗
2 for given values of R1 and R2. The optimal

numerical values for the review periods are obtained by exhaustive search. All exper-
iments have been conducted with a desktop computer with 2.8 GHz Intel Core Duo
processor and 3.21 GB RAM.

5.1 Structure of an optimal (R, S)-policy

In the first part of our numerical study we have used a Mixed Erlang demand model as
a continuous demand distribution due to several reasons. First, Mixed Erlang distrib-
utions are very flexible and can represent a large number of different demand patterns
Tijms (1986). Second, they are easy to use and there is an exact evaluation procedure
available to compute the expected shortfall and the expected number of backorders as
described in Van Houtum (2006). In the numerical study, we fix the mean demand to
100 and vary its standard deviation to get the desired coefficient of variation levels.

Part of the numerical results are presented in Table 2 for the situation where the
added value at stockpoint 1 is small, i.e. h1 = 0.2.

The first observation is related to the uniqueness of the optimal solution. In many
situations there exist multiple optima in terms of review periods. For example, consider
the problem instance with α∗ = 0.8, CV = 1 and K2 = 400, where the difference
between the base stock levels is strictly zero. No matter how many ordering opportu-
nities stockpoint 1 has, only at the first ordering moment of the replenishment cycle
there is stock available to be shipped at stockpoint 2 and only at this point in time
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Table 2 Optimal solutions for h1 = 0.2, l1 = l2 = 1, and K1/μ = 2

h1 α∗ CV K2 R∗
1 R∗

2 S∗
1 S∗

2 S∗
2 − S∗

1 G(R∗
1 , R∗

2 , S∗
1 , S∗

2 )

0.2 0.8 0.5 200 1 3 507.81 508.17 0.36 405.68

0.2 0.8 0.5 400 1 4 582.40 582.41 0.01 458.55

0.2 0.8 1 200 1 3 564.82 564.82 0.00 549.08

0.2 0.8 1 400 1 4 635.74 635.74 0.00 601.43

0.2 0.8 1.5 200 3 3 625.18 625.18 0.00 712.60

0.2 0.8 1.5 400 1 4 698.84 698.84 0.00 766.58

0.2 0.9 0.5 200 1 3 573.32 573.32 0.00 459.94

0.2 0.9 0.5 400 1 4 657.75 657.76 0.01 519.93

0.2 0.9 1 200 1 3 690.80 690.80 0.00 663.11

0.2 0.9 1 400 1 4 773.55 773.55 0.00 724.73

0.2 0.9 1.5 200 1 3 831.54 831.54 0.00 891.10

0.2 0.9 1.5 400 1 4 912.75 912.75 0.00 956.14

0.2 0.99 0.5 200 3 3 697.07 736.41 39.35 606.13

0.2 0.99 0.5 400 3 3 697.07 736.41 39.35 672.80

0.2 0.99 1 200 1 3 1,050.36 1,050.36 0.00 1,003.08

0.2 0.99 1 400 1 3 1,050.36 1,050.36 0.00 1,069.75

0.2 0.99 1.5 200 1 2 1,274.46 1, 274.46 0.00 1,405.51

0.2 0.99 1.5 400 1 3 1,392.94 1, 392.94 0.00 1,486.32

an order can be executed. Therefore, K1 is going to be incurred only once during a
replenishment cycle of stage 1 independent on the number of possible order moments.
Three different combinations of review periods (R∗

1 , R∗
2) lead to the same minimal

cost: (1, 4), (2, 4), and (4, 4). Note that the same line of thoughts does not hold if
upstream unavailability is not considered.

The second observation is also related to the review periods. For a positive difference
of the base stock levels the numerical values for the length of the review periods R∗

1 and
R∗

2 are equal and, as we have discussed before, when there is no difference between
the optimal base stock levels, we can always find an optimal policy where R∗

1 = R∗
2

holds. The same results also hold for the case h1 = 0.5. However, as the holding cost
at stockpoint 1 increases, it is wiser to keep more stock at upstream stages and let the
downstream stages order more frequently. We observe that this effect occurs in many
cases when h1 = 0.8 (especially with high α∗) as presented in Table 3.

From the results presented in Table 2, it can also be observed that the differences
between the optimal base stock levels are often zero or small. Thus, materials are
pushed through the system when h1 is low and demand variability is large, K1 is
large and lead times are short, and all safety stock is placed close to the customer.
Under these parameter settings the system behaves similar to a single stockpoint with
lead time l1 + l2. We have compared the minimal costs of such a system with the
cost under an optimal echelon policy for the two stage system for all our problem
instances. The relative cost differences � are presented in Table 4 and support our
findings.
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Table 3 Optimal solutions for h1 = 0.8, l1 = l2 = 1, and K1/μ = 2

h1 α∗ CV K2 R∗
1 R∗

2 S∗
1 S∗

2 S∗
2 − S∗

1 G(R∗
1 , R∗

2 , S∗
1 , S∗

2 )

0.8 0.8 0.5 200 3 3 421.49 525.83 104.34 342.90

0.8 0.8 0.5 400 3 6 421.50 837.92 416.42 380.98

0.8 0.8 1.0 200 3 3 481.58 608.34 126.76 483.53

0.8 0.8 1.0 400 3 6 482.36 950.86 468.50 532.62

0.8 0.8 1.5 200 3 3 550.87 681.38 130.51 649.05

0.8 0.8 1.5 400 4 4 635.00 739.15 104.16 704.40

0.8 0.9 0.5 200 3 3 478.39 595.99 117.60 395.17

0.8 0.9 0.5 400 3 6 478.39 924.98 446.58 435.90

0.8 0.9 1.0 200 3 3 593.74 746.06 152.32 593.99

0.8 0.9 1.0 400 2 6 506.80 1, 140.27 633.47 645.28

0.8 0.9 1.5 200 3 3 742.57 912.57 170.00 823.31

0.8 0.9 1.5 400 2 4 656.54 1, 120.01 463.47 881.48

0.8 0.99 0.5 200 2 4 516.07 913.55 397.48 521.92

0.8 0.99 0.5 400 2 6 516.13 1, 142.75 626.62 566.30

0.8 0.99 1.0 200 2 4 806.36 1, 323.65 517.29 911.94

0.8 0.99 1.0 400 2 4 806.36 1, 323.65 517.29 961.94

0.8 0.99 1.5 200 2 2 1,115.36 1,435.95 320.58 1,306.07

0.8 0.99 1.5 400 2 4 1,116.77 1,763.68 646.91 1,359.63

Table 4 Summary of the results
for single stockpoint assumption
compared to the optimal solution

%�

Factor Level Avg. Max.

h1 0.2 0.16 1.34

0.5 1.65 7.06

0.8 8.75 20.92

5.2 The impact of different cost assumptions

In the second part of the numerical study we have investigated the effect of the assump-
tions related to the fixed ordering costs. As mentioned before, upstream stock avail-
ability is often neglected and to compute the average number of orders during a replen-
ishment cycle only the probability of having positive demand is considered. In this
part of the numerical study we have not only considered Mixed Erlang distributed
demand, but we have also included a demand distribution where the probability of
having no demand in a period is positive. We have chosen a very simple distribution
where demand is either zero with probability p0 or a fixed positive amount (in our
study the maximum demand is 5) is demanded with probability 1 − p0. For a given
coefficient of variation, we set p0 using p0 = CV2

1+CV2 . This demand distribution rep-
resents a situation with non-regular, or even lumpy demand, while a Mixed Erlang
distribution is more suitable for regular demand.
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Table 5 Impact of the cost assumption

Regular demand Lumpy demand

%�G %�CPU %�G %�CPU

Factor Level Avg. Max. Avg. Avg. Max. Avg.

h1 0.2 0.00 0.12 79.03 0.01 0.46 12.85

0.5 0.01 0.27 77.77 0.13 3.25 12.55

0.8 0.11 0.65 76.10 0.11 3.11 11.93

α∗ 0.8 0.04 0.65 77.10 0.15 3.25 13.75

0.9 0.05 0.36 78.29 0.08 2.72 12.90

0.99 0.03 0.24 77.50 0.02 2.46 10.68

CV 0.5 0.02 0.52 77.79 0.03 1.20 13.38

1 0.04 0.65 79.40 0.21 3.25 12.42

1.5 0.06 0.51 75.70 0.02 0.57 11.53

K1/μ 0.5 0.05 0.65 77.00 0.02 1.20 10.93

2 0.03 0.36 78.26 0.14 3.25 9.77

K2/K1 1 0.03 0.39 77.82 0.09 3.11 12.18

2 0.06 0.65 77.44 0.08 3.25 12.70

l1 1 0.05 0.65 77.91 0.11 3.25 11.62

4 0.04 0.33 77.35 0.06 2.46 13.27

l2/ l1 1 0.03 0.47 78.33 0.08 2.79 12.31

2 0.05 0.65 76.93 0.08 3.25 12.58

For both demand scenarios we have computed the optimal policy parameters
(R∗

1 , R∗
2 , S∗

1 , S∗
2 ) for the situation where stock availability is included for the compu-

tation of the average number of orders placed. Also, we computed the optimal policy
parameters (R̃1, R̃2, S̃1, S̃2) under the simplifying assumption that each order can be
shipped. We have compared the actual costs using the relative difference in costs
defined as

�G = G(R̃1, R̃2, S̃1, S̃2) − G(R∗
1 , R∗

2 , S∗
1 , S∗

2 )

G(R∗
1 , R∗

2 , S∗
1 , S∗

2 )
. (17)

In order to measure the impact of the simplification on the computational effort,
we consider relative differences in CPU time as follows:

�CPU = CPU∗ − CPUS

CPU∗ , (18)

where CPU∗ and CPUS represent the processing times for finding the optimal
solution, and under the simplifying assumption, respectively. The results are shown
in Table 5, where in the column with title Avg. the average of all observed relative
differences and in the column with title Max. the maximum of all observed relative
differences is depicted.
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Fig. 4 Non-optimal review periods

It can be seen that the simplifying cost assumption does not have a great impact on
the cost performance. When demand is regular nearly no differences can be observed
and the differences in the situation with lumpy demand are small. This can be explained
by the structure of the optimal policy, where stockpoint 1 only places orders, when there
is stock available at stockpoint 2. Thus, in the optimal solution fixed cost is incurred
at every review period. As a result the simplifying assumption, works very well with
considerably improved CPU performance. For the regular demand case, the average
CPU time for finding the optimal solution (solution under simplifying assumption)
for one problem is 138.16 (32.77) s. For the lumpy demand case, it takes on average
5.70 (5.04) s to find an optimal solution (solution under simplifying assumption).

As we have mentioned before, periodic review systems are sometimes applied when
orders for multiple items have to be coordinated or orders have to be coordinated
with transportation schedules. In such situations it may happen, that a hierarchical
approach is applied for making decisions, and the review periods are determined first.
As a consequence they are exogenous variables in the process of optimizing safety
stocks.

We have conducted an experiment where optimal base stock levels are computed for
given values of R2 and we have studied the impact of the cost assumption under Mixed
Erlang demand. The relative difference �G is depicted in Fig. 4 for h1 = h2 = 0.5,
α∗ = 0.9, CV= 1, K2/K1 = 2, l1 = l2 = 1, and R1 = 1.

As can be seen in Fig. 4, in case of non-optimal review periods, the simplifying
assumption for the fixed ordering cost can have a large impact on the cost performance
of the obtained policy. Depending on the size of the fixed cost there can be significant
differences. We can conclude that under limited flexibility for the review periods, it is
crucial to take into account upstream availability when optimizing safety stocks.

6 Summary and outlook

In this paper, we have studied a serial two-echelon inventory system under periodic
review and central control. The focus of this research was on the fixed cost related
to an order. We have derived an exact expression for the average cost and have pro-
vided necessary conditions for the optimal base stock levels. Our model enabled us
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to investigate the impact of a simplifying assumption related to the fixed ordering
cost, which is often the basis of an analysis of these kind of systems. Our numerical
study supports the conjecture that the assumption is justified when all policy para-
meters can be optimized, review periods as well as base stock levels. However, if the
ordering moments are constrained by other factors it is crucial to consider upstream
availability of stock for the optimization of safety stocks. Moreover, it turns out that
for low added holding cost at stockpoint 1 materials should be pushed through the
system.

Our study can be seen as a first step, because real-life supply chain structures
are usually more complex. Thus, in a next step divergent and convergent or even
more general multi-echelon systems should be investigated. Another future research
direction can be including other limiting factors such as capacity constraints.

Appendix

Derivation of Eq. (14)

We first derive the expected cost per period attached to replenishment cycle of stage
2. In Eq. (8) this cost is given as:

1

R2

R2−1∑
k=0

E[C2(t0 + l2 + k)]

= 1

R2

R2−1∑
k=0

E[δ2(t0 + l2 + k)K2 + h2 X2(t0 + l2 + k)]

= K2

R2
P{D[t0 − R2, t0) > 0} + h2

1

R2

R2−1∑
k=0

(S2 − (l2 + k + 1))

= K2

R2
P{D[t0 − R2, t0) > 0} + h2

(
S2 −

(
l2 + 1

2
(R2 + 1)

)
μ

)
. (19)

Similarly, the cost per period attached to replenishment cycle of stage 1 is

1

R2

r−1∑
i=0

R1−1∑
j=0

E[C1(t0 + l1 + l2 + i R1 + j)]

= 1

R2

r−1∑
i=0

R1−1∑
j=0

E[δ1(t0 + l1 + l2 + i R1 + j)K1 + h1 X1(t0 + l1 + l2 + i R1 + j)

+(p + h1 + h2)X1(t0 + l1 + l2 + i R1 + j)−]
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= h1(S1 − (l1 + 1

2
(R1 + 1))μ − R1

R2

r−1∑
i=0

E[B1(t0 + l2 + i R1)])

+(p + h1 + h2)
1

R2

r−1∑
i=0

R1−1∑
j=0

E[X1(t0 + l1 + l2 + i R1 + j)−]

+ K1

R2

r−1∑
i=0

E[δ1(t0 + l1 + l2 + i R1)]. (20)

The summation of (19) and (20) results in (14).

Proof of Theorem 1

Stockpoint 1 will place an order at period t if the following conditions are met:

1. t is a review period for stockpoint 1,
2. Inventory position of stockpoint 1 before placing the order at the beginning of

period t is below S1,
3. The physical stock level at stockpoint 2 is positive at the beginning of period t

before stockpoint 1 places an order.

Using these principles we prove each condition separately.

• Case 1: i = 0, . . . , r − 1 and j = 1, . . . , R1 − 1

The periods t0 + l2 + i R1 + j for i = 0, . . . , r − 1 and j = 1, . . . , R1 − 1 are not
review periods of stockpoint 1, so there will be no arrival of orders at the beginning
of periods t0 + l1 + l2 + i R1 + j when j �= 0. Thus, δ1(t0 + l1 + l2 + i R1 + j) = 0.

• Case 2: i = 1, . . . , r − 1 and j = 0

The installation stock level of 2 directly affects the decision of ordering of stockpoint
1. It changes only when there is an order arrival from the supplier, or items are ordered
from stockpoint 1. We define the installation stock level of stockpoint 2 as I S2(t) at
the beginning of period t , after arrival of orders to stockpoint 2 and after stockpoint 1
places an order. It is equal to the difference between the echelon stock of stockpoint 2
and the inventory position of stockpoint 1 at period t . Throughout the review periods
t0 + l2 + i R1 such that i = 1, . . . , r − 1, there are no order arrivals to stockpoint 2.
Also, there will be no shipments from stockpoint 2 to 1 in between two review periods
of stockpoint 1. Thus, the installation stock level at stockpoint 2 at period t0 + l2 + i R1
before stockpoint 1 places an order will be equal to I S2(t0 + l2 + (i − 1)R1).

I S2(t0 + l2 + (i − 1)R1) = I L2(t0 + l2 + (i − 1)R1) − I P1(t0 + l2 + (i − 1)R1)

= S2 − S1 − D[t0, t0+l2+(i − 1)R1)+[D[t0, t0+l2+(i − 1)R1)−(S2 − S1)]−.

There are two possible outcomes for the installation stock level depending on the
amount of demand during the time interval [t0, t0 + l2 + (i − 1)R1):
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1. If D[t0, t0 + l2 + (i − 1)R1) ≥ S2 − S1, then I S2(t0 + l2 + (i − 1)R1) = 0,
2. If D[t0, t0 + l2 + (i − 1)R1) < S2 − S1, then I S2(t0 + l2 + (i − 1)R1) > 0.

An order can be placed by stockpoint 1 at the beginning of period t0 + l2 + i R1,
only when I S2(t0 + l2 + (i − 1)R1) > 0. If this is the case, it also means that
stockpoint 1 has raised its inventory position up to S1 at period t0 + l2 + (i − 1)R1.
Then, if customer demand during last R1 periods is positive, stockpoint 1 will place
an order at the beginning of period t0 + l1 + l2 + i R1. Thus, the expected value
of δ1(t0 + l1 + l2 + i R1) for i = 1, . . . , r − 1 is P{D[t0, t0 + l2 + (i − 1)R1) <

S2 − S1}P{D[t0 + l2 + (i − 1)R1, t0 + l2 + i R1) > 0}.
• Case 3: i = 0 and j = 0

The arguments we have followed for Case 2 also hold for this case. On top of that,
there can be an order arrival to stockpoint 2 at the beginning of the period t0 + l2
and I S2(t0 + l2) can be positive. Therefore, we differentiate three situations where
stockpoint 1 can place an order.

1. I S2(t0 + l2 − R1) > 0,
2. I S2(t0 + l2 − R1) = 0 and I P1(t0 + l2 − R1) < S1,
3. I S2(t0 + l2 − R1) = 0 and I P1(t0 + l2 − R1) = S1.

At the first situation, stockpoint 1 will place an order if D[t0 + l2 − R1, t0 + l2) > 0.
Here, it is not important if stockpoint 2 receives a shipment at t0 + l2 since it already
has positive stock level. The probability for situation 1 is: P{D[t0, t0 + l2 − R1 <

S2 − S1}P{D[t0 + l2 − R1, t0 + l2) > 0}.
At the second situation, stockpoint 2 has no physical stock left and stockpoint 1 has

positive shortfall. Thus, stockpoint 1 will place an order even if there is no demand
during [t0 + l2 − R1, t0 + l2). Beware that an order can be shipped from stockpoint 2 to
stockpoint 1, if there is an order arrival to stockpoint 2 at the beginning of period t0+l2.
So, for situation 2, we have P{D[t0 − R2, t0 +l2 − R1) > S2 − S1, D[t0 − R2, t0) > 0}
as the expected order frequency.

At the last situation, stockpoint 1 will be below its inventory position if D[t0 +
l2 − R1, t0 + l2) > 0 and it can place an order if there is an arrival to stockpoint 2 at
t0 + l2. The combined probability for ordering becomes P{D[t0 − R2, t0 + l2 − R1) =
S2 − S1, D[t0 − R2, t0) > 0, D[t0 + l2 − R1, t0 + l2) > 0}.
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